Output one or multiple featureplots
TS_featureplots.RdOutput one or multiple featureplots
Usage
TS_featureplots(
seurat_object = get(default_seurat_object),
features,
wrap_plots = TRUE,
wrap_n_columns = NULL,
add_dimplot = TRUE,
dimplot_group.by = NULL,
dimplot_cols = NULL,
dimplot_label = TRUE,
expression_cols = c("lightgray", "#FEFDE2", "#FEEAC7", "#FDD7AC", "#FDC591", "#FDB276",
"#FC9F5B", "#FC8C40", "#FC8C40", "#EB753C", "#DA5D38", "#C94634", "#B72F30",
"#A6172C", "#950028"),
reduction = "umap",
pt.size = 1,
order = TRUE,
assay = NULL,
reverse_y_scale = FALSE,
reverse_x_scale = FALSE
)Arguments
- seurat_object
The Seurat object you wish to plot. Defaults to "default_seurat_object".
- features
Vector of features to plot.
- wrap_plots
Whether to wrap plots into one by patchwork::wrap_plots(). Defaults to TRUE.
- wrap_n_columns
If wrap_plots = T, how many columns do you want for the final plot.
- add_dimplot
If wrap_plots = T, whether to include Seurat::DimPlot() as the first panel. Defaults to TRUE
- dimplot_group.by
What metadata to group cells by. Defaults to Seurat::Idents(seurat_object)
- dimplot_cols
Colours to use for the Seurat::DimPlot(). Defaults to scales::hue_pal()(length(levels(Seurat::Idents(seurat_object))))
- dimplot_label
Whether to label the DimPlot by dimplot_group.by. Defaults to TRUE.
- expression_cols
Vector of colors to use (low->high), defaults to a 15-step gradient from "lightgray" to "#950028"
- reduction
Dimensionality reduction technique to use for plotting, default = "umap".
- pt.size
Size of each dot, default = 1.
- order
Whether to plot positive cells last, e.g. on top, default = TRUE.
- assay
What assay to pull gene expression data from. Defaults to "RNA", as this is the convention.
- reverse_y_scale
Logical. Should the Y axis be reversed?
- reverse_x_scale
Logical. Should the X axis be reversed?